by Joseph Samuel.
Cricketing nations have a very good idea what a boundary is, it’s good for a cool four runs, without the bother of running! Corners are tense moments in a football (soccer to some) match when a well struck ball can curve into the goal. The crease is what a batsman lunges for when the wicket keeper ….. wait! this is not a sports column, but CQG+! Let’s back up and explain what our paper really is about.
In a path integral approach to quantum gravity, one has to divide up spacetime into pieces and focus on the action within each piece. In the elementary case of particle mechanics, this “skeletonisation” converts the action expressed as a Riemann integral into a discrete sum. A desirable property of the action is that it should be additive when we glue the pieces back together. This is achieved only when one properly takes into account the boundaries of the pieces. The boundaries can be spacelike, timelike or null. Much work has focused on the first two cases. The Einstein–Hilbert Action principle for spacetime regions with null boundaries has only recently attracted attention (look up the Arxiv for papers by E. Poisson et al and Parattu et al; references would not be consistent with the chatty, informal style of CQG+). These papers deal with the appropriate boundary terms that appear in all boundary signatures.
You must be logged in to post a comment.