A good month for Einstein – gravitational starlight deflection during the Great American Eclipse

by Dr. Donald G. Bruns


eclipse

Don Bruns and his wife Carol on eclipse day at the Lions Camp on Casper Mtn. The tripod is bolted to the custom mosaic designed and built by his cousin Steve Lang.

After much anticipation, two experiments had great successes last year.  On August 17 2017, the LIGO/VIRGO collaboration monitored the merger of two neutron stars millions of light years away.  Only four days later in Wyoming, an experiment to measure the gravitational bending of starlight by the Sun acquired the best data since the idea was first tested in 1919, by Sir Arthur Eddington, in Africa.  I published my results on that experiment in Classical and Quantum Gravity on March 6, 2018.  My solo project to repeat Eddington’s achievement, which made Einstein famous, required a lot less manpower than LIGO!

Early last century, Einstein published his General Theory of Relativity that contained some unusual predictions, including the idea that massive bodies bend light beams.  The only way to test this would be during a total eclipse, when the sky would be dark enough to see stars close to the Sun, where the effect just might be measurable.

I started planning Eddington’s re-enactment when I found out that no one had attempted it since 1973 (also in Africa) and that no one had ever succeeded in getting all the parts to work during those precious few minutes of totality.  I assumed that with modern charge-coupled device (CCD) cameras and computerized telescopes, the experiment would be much easier.  I was wrong!  While some aspects were simplified (the Gaia star catalog provided accurate star positions, for example, and modern weather predictions and the compact equipment eased many logistics problems), dealing with pixels, turbulence, and a limited sensor dynamic range presented new challenges.

Continue reading

Memories of Professor Stephen Hawking, 1942-2018

by Clifford Will, Editor-in-Chief, Classical and Quantum Gravity


The gravitational physics community, indeed the whole world, mourns the passing on Wednesday 14th March, 2018, of Stephen Hawking at the age of 76. The Editor, Board and staff of CQG offer their heartfelt condolences to Stephen’s family. There are already numerous extended obituaries of Stephen, and I won’t attempt one here (see for example the fine obituaries by Dennis Overbye in the New York Times and by Roger Penrose in the Guardian).

I will, however, offer two personal remembrances of Stephen that I hope will illustrate his humorous side. In 1972, I was a student at the famous Les Houches Summer School on black holes, where Stephen, Brandon Carter and Jim Bardeen lectured and wrote the seminal paper “The Four Laws of Black Hole Mechanics”, that suggested a formal analogy with the laws of thermodynamics. This was soon followed by papers by Jacob Bekenstein and by Stephen that made this more than an analogy. But one of the things I most remember about the school was the awe-struck look on my eight-year-old daughter Betsy’s face watching Stephen in his wheelchair demonstrating how he could wiggle his ears like Dumbo the elephant.

The second remembrance was a visit to Cambridge in 1978, where Stephen had asked me to give a colloquium on tests of GR and invited me and my wife to join him and Jane at “high table” dinner at his college, Gonville and Caius. I showed up in a psychedelic paisley shirt with ridiculously wide collars, baby blue flared jeans, and high-heeled boots (think John Travolta in “Saturday Night Fever”, but with hippie length hair). This was attire totally inappropriate for high table (hey, this was the 70s and was the best I had in my suitcase), but Stephen was delighted to have somebody there who made the stuffy and decorum-obsessed masters of the college more uncomfortable than he did. And when, during the ritual passing of the after-dinner liqueurs along the table, the college master chided me sternly for allowing the port to precede the claret, I thought Stephen was going slide out of his wheelchair, hysterical with laughter.

We have lost a remarkable scientist and a unique human being.


This work is licensed under a Creative Commons Attribution 3.0 Unported License.

 

Introducing CQG’s 2017 reviewer of the year

IMAG0300

Dr Matthew Pitkin is a post-doc at the Institute for Gravitational Research, University of Glasgow and member of LIGO Scientific Collaboration

It’s sophomore year of our Classical and Quantum Gravity reviewer of the year awards. This year congratulations go to Dr Matthew Pitkin whose reviews were not only of exceptional quality but also submitted in good time. Matt has dedicated even more time to CQG by answering these questions. Congratulations Matt!

Tell us how you go about reviewing an article?

I’d probably echo many of last years’ winners points. Firstly, I have to decide whether I think I have the expertise to review the article. Working in the field of gravitational waves, I quite often receive requests to review papers on aspects of theoretical gravity, which I have absolutely no relevant knowledge of. (Going by my day-to-day work I’m really just a self-taught software developer and data scientist, who masquerades as an astrophysicist!) If I decide that I am qualified, then I give the article a quick skim, print it out, write “For review” in big red letters on it, and sit it somewhere prominently on my desk, so that I can’t ignore it.  I also set an online calendar reminder with the deadline for returning the review.

I normally actually sit down to perform the review during a lull in my day-to-day work, like when I’ve just set an analysis code running. I just go through it methodically with a red pen in hand and scribble on the print out when I hit things I don’t understand or think might be problematic. Often, I’ll find that parts I don’t understand are actually explained later on in the paper, so this can indicate that some rearrangement of the article might be in order to clarify things. I check for any stand-out mathematical errors, but don’t have the ability to check all derivations in papers. I try not to make comments for the sake of writing something if there aren’t any problems with the paper. When I do make comments, I try to give constructive advice about how to improve the clarity of the article, or where more explanation might be required. But, I also know that it’s not my job to re-write the article, so don’t give very lengthy comments or suggestions.

Continue reading

Some features of the Cosmos in Loop Quantum Gravity

By Parampreet Singh, Louisiana State University, USA


ParamSingh

CQG Editorial Board member, Param Singh, Guest Edited the Applications of loop quantum gravity to cosmology focus issue in 2016 and 2017

A successful union of Einstein’s general relativity and quantum theory is one of the most fundamental problems of theoretical physics. Though a final theory of quantum gravity is not yet available, its lessons and techniques can already be used to understand  quantization of various spacetimes. Of these, cosmological spacetimes are of special interest. They provide a simpler yet a non-trivial and a highly rich setting to explore detailed implications of quantum gravitational theories. Various conceptual and technical difficulties encountered in understanding quantum dynamics of spacetime in  quantum gravity can be bypassed in such a setting. Further, valuable lessons can be learned for the quantization of more general spacetimes.

In the last decade, progress in loop quantum gravity has provided avenues which allow us to reliably answer various interesting questions about the quantum dynamics of spacetime in the cosmological setting. Quantum gravitational dynamics of cosmological spacetimes obtained using techniques of  loop quantum gravity leads to a novel picture where singularities of Einstein’s theory of general relativity are overcome and a new window opens to test loop quantum gravity effects through astronomical observations.

The scope of the Focus Issue: Applications of loop quantum gravity to cosmology, published last year in CQG, is to provide a snapshot of some of the rigorous and novel results on this research frontier in the cosmological setting.

Continue reading

Surfing a wave to Stockholm

by Clifford M. Will, CQG Editor-in-Chief


What a week for gravitational physics!   

First came the September 27th announcement of another detection of gravitational waves, this time by the three-detector network that included Virgo along with the two LIGO observatories. The source of the gravitational waves was another fairly massive black hole binary merger, with black holes of 30 and 26 solar masses. Once again, about 3 solar masses were converted to energy in a fraction of a second, leaving behind a 53 solar mass black hole spinning at about 70 percent of the maximum allowed. With  Virgo included in the detection, the localization of the source on the sky was improved dramatically over earlier detections by LIGO alone, dropping to a small blob on the sky measuring 60 square degrees, from the large, 1000 square degree banana-shaped regions of earlier detections.

For the first time, a test of gravitational-wave polarizations was carried out.  Because the arms of the two LIGO instruments are roughly parallel, they have very weak sensitivity to different polarization modes of the waves.  But with Virgo’s very different orientation, it was possible to show that the data favor the two spin-2 modes of general relativity over pure spin-0 or pure spin-1 modes.

But then, six days later came the announcement of the Nobel Prize in Physics, awarding one half of the prize to Rainer Weiss of MIT and the other half shared between Kip Thorne and Barry Barish of Caltech, for decisive contributions to the detection of gravitational radiation. CQG congratulates the winners!

Can observations determine the quantum state of the very early Universe?

by Ivan Agullo, Abhay Ashtekar and Brajesh Gupt


Can observations determine the quantum state of the very early Universe?

Can we hope to know even in principle what the universe was like in the beginning? This ancient metaphysical question has acquired new dimensions through recent advances in cosmology on both observational and theoretical fronts. To the past of the surface of last scattering, the universe is optically opaque. Yet, theoretical advances inform us that dynamics of the universe during earlier epochs leaves specific imprints on the cosmic microwave background (CMB). Therefore, we can hope to deduce what the state of the universe was during those epochs. In particular, success of the inflationary scenario suggests that the universe is well described by a spatially flat Friedmann, Lemaître, Robertson, Walker (FLRW) space-time, all the way back to the onset of the slow roll phase. This is an astonishingly early time when space-time curvature was some 10^{65} times that on the horizon of a solar mass black hole and matter density was only 11 orders of magnitude smaller than the Planck scale.

Clockwise from top left: Gupt, Ashketar and Agullo

Clockwise from top left: Brajesh Gupt (Pennsylvania State University), Abhay Ashtekar (Pennsylvania State University) and Ivan Agullo (Louisiana State University)

Continue reading

Amaldi12 – The Edoardo Amaldi Conference on Gravitational Waves

It’s been a busy few weeks for CQG – we’ve been to the Era of Gravitational Wave Astronomy conference in Paris, hosted the annual Editorial Board meeting in London, attended the Loops17 conference in Warsaw and now it’s time to fly off to California for Amaldi12.

Amaldi12

Amaldi12, named after Edoardo Amaldi, will be held at the Hilton Hotel in Pasadena, CA from 9th – 14th July. The conference will explore the science around gravitational waves and their detection, particularly in light of the confirmed detections by LIGO-Virgo and new advances with the LISA mission.

I will be at the conference Monday through Friday with a table top booth at the event, located near the international ballroom in the hotel. I’m really interested in hearing your thoughts about the journal, so please do stop by say hello and have a chat.

Congratulations to Dr Bernard Kelly, CQG Reviewer of the Year

Classical and Quantum Gravity is proud to recognise excellence in peer review and acknowledge our reviewers for their invaluable contribution to the journal.

Bernard Kelly

Bernard Kelly, University of Maryland, Baltimore County & NASA Goddard Space Flight Center

Congratulations to Dr Bernard Kelly who has won our newly introduced ‘Reviewer of the Year‘ title for his excellent referee reports throughout 2016.  Below Dr Kelly gives us some insight into his process of reviewing and tells us a little bit more about himself.

Tell us how you go about reviewing an article?

First I sit on it for a week or so, thinking “Sounds appropriate. I’ll take a look when I get the chance”. And then the next thing, the journal is pinging me with a follow-up notification, which is when I realise I’ve let too much time slip by.

I read the title, abstract, gloss over the Introduction, and try to assess how mathematically involved the text is, and how much overlap there is with my own areas of expertise (or at least competence). I don’t expect to be familiar with all aspects of the research, but if it’s 50% or better (in whatever fuzzy metric I’m using), I think it’s worth giving it a serious look. Occasionally, I find that what I thought was going to be a good fit wasn’t on closer inspection, and I end up declining.

Now I print the paper out: in colour, if I’m feeling extravagant with my lab’s resources, but usually in B & W. It’s impractical to mark up PDFs on a laptop; perhaps it’d be better on a full-size tablet, but I don’t have one yet. I break out two pens — usually blue & red.

Continue reading

The Era of Gravitational-Wave Astronomy

At the beginning of next week I will be attending the Era of Gravitational Wave Astronomy conference (or TEGRAW 2017, for short) at the Institut D’Astrophysique in Paris, France.

tegraw

The conference aims to highlight the most recent developments in both theoretical works (such as the two-body problem, effective theories, numerical relativity, and tests of gravity theories) and experimental works (such as future detectors, both on ground and in space).

IOP Publishing/ CQG will have a small table top booth at the event so feel free to stop by if you fancy having a chat. I’ll only be there Monday through Wednesday (unfortunately missing the social event) but am looking forward to meeting you.

I hope to see you in Paris!

A brief history of Supergravity: the first 3 weeks

StanleyDeser2009_01

Stanley Deser is emeritus Ancell Professor of Physics at Brandeis University and a Senior Research Associate at Caltech

Background
Prior to Supergravity’s (SUGRA’s) inception, the ideas in the air came from two new, quite different realms.  One realm was supersymmetry (SUSY); the other arose from the emerging difficulties in achieving consistent interactions between gravity and higher (s > 1) spin gauge fields.

Indeed, the Western discoverers of SUSY, Julius Wess and Bruno Zumino [1], would frequently visit Boston from NYU to spread the SUSY gospel, which did get even our blasé attention after a while, especially since the simplest SUSY multiplet pattern (s; s + 1/2) linking adjoining Fermi-Bose fields had no obvious reason to stop at the s = 0 and s = 1/2 models that had been studied thus far.
Continue reading