Can astrophysical black holes have “hair”?

by Carlos Herdeiro and Eugen Radu, Guest Editors of Focus Issue: Hairy Black Holes.


Carlos A. R. Herdeiro (left) got his PhD from Cambridge University (U.K.) in 2002. He is currently an assistant professor at Aveiro University, Portugal, and an FCT principal researcher. He is also the founder and coordinator of the Gravitation group at Aveiro University ( Eugen Radu (right) got his PhD from Freiburg University (Germany) in 2002. He is currently an FCT principal researcher at Aveiro University (Portugal).

One of the most recognizable statements about black holes is that they have “no-hair”. Close inspection, however, shows that this is a belief rather than a mathematically proven theorem. Moreover, decades of research on this topic have shown that, depending on what one precisely means, this statement may be simply wrong. That is, as solutions of Einstein’s equations, in a generic context, black holes are not necessarily “bald”. Then, less ambitious, but perhaps more relevant questions are: “Can astrophysical black holes have hair?” and “Can we test the existence of black hole hair with present and future astrophysical observations?”.

This CQG focus issue brings together a set of papers describing models in which black holes do have “hair”, as well as observational efforts that have the potential to assess if this is (or not) the case for astrophysical black hole candidates. This collection of research papers is by no means a faithful and complete description of all possible alternatives to the Kerr paradigm in the literature. Rather, the selected papers focus on Continue reading

Issue of the Beginning: Initial Conditions for Cosmological Perturbations

by Abhay Ashtekar and Brajesh Gupt.


Abhay Ashtekar holds the Eberly Chair in Physics and the Director of the Institute for Gravitation and the Cosmos at the Pennsylvania State University. Currently, he is a Visiting Professor at the CNRS Centre de Physique Théorique at Aix-Marseille Université.

Although our universe has an interesting and intricate large-scale structure now, observations show that it was extraordinarily simple at the surface of last scattering. From a theoretical perspective, this simplicity is surprising. Is there a principle to weed out the plethora of initial conditions which would have led to a much more complicated behavior also at early times?

In the late 1970s Penrose proposed such a principle through his Weyl curvature hypothesis (WCH) [1,2]: in spite of the strong curvature singularity, Big Bang is very special in that the Weyl curvature vanishes there. This hypothesis is attractive especially because it is purely geometric and completely general; it is not tied to a specific early universe scenario such as inflation.

However, the WCH is tied to general relativity and its Big Bang where classical physics comes to an abrupt halt. It is generally believed that quantum gravity effects would intervene and resolve the big bang singularity. The question then is Continue reading

Pants on fire!

One of the authors, Ian Jubb, discussing a pair of trousers with his colleagues at Imperial College London. Ian Jubb is currently the PhD student of Fay Dowker at Imperial College London.

One of the authors, Ian Jubb, discussing a pair of trousers with his colleagues at Imperial College London. Ian Jubb is currently the PhD student of Fay Dowker in the Theoretical Physics group at Imperial College London.

by Ian Jubb and Michel Buck.

Did you know that Quantum Gravity literally sets pants on fire?

Your pants are not just a nifty garment, they are also a perfect example of a space undergoing a process known as topology change. Take a space that initially consists of two separate circles. If they were to meet and merge into a single circle, the topology of the space would have changed. The trousers allow us to visualise each stage of this process, with cross sections higher up the trouser leg corresponding to later times in the process (if we hold the trousers upside-down, we get the reverse process, corresponding to a single circle splitting into two circles). Instead of viewing this process as the space changing in time, Einstein would tell us to view the trousers in their entirety, as one whole spacetime — the trousers spacetime.

But why should we care about spaces that can ‘split’ and ’attach’ like this? It turns out that there are good reasons to believe that Continue reading

Quantum gravity in the sky?

by Abhay Ashtekar and Brajesh Gupt.

Quantum gravity effects in the very early Universe can leave observable imprints.


Abhay Ashtekar (picture taken as a postdoc at Oxford University) is the Eberly Professor of Physics and the Director of the Institute for Gravitation and the Cosmos at the Pennsylvania State University.

The inflationary paradigm traces the genesis of the large-scale structure of the cosmos to astonishingly early times. However, at the onset of inflation spacetime curvature is only about 10-14 times the Planck curvature where quantum gravity effects dominate. Therefore, it is natural to ask if the earlier, pre-inflationary phase of dynamics would change observable predictions of standard inflation. The answer is often assumed to be in the negative. Our CQG paper shows that this conclusion is premature. Specifically, in Loop Quantum Cosmology (LQC) there is an unforeseen interplay between the ultraviolet effects that tame the big bang singularity, and dynamics of infrared modes of cosmological perturbations. As a result, imprints of the quantum spacetime geometry in the Planck regime can manifest themselves at the largest angular scales in the CMB.

In LQC, quantum geometry effects dominate in the Planck regime, replacing the big bang by a quantum bounce, where scalar curvature reaches its finite and universal upper bound. Therefore the radius of curvature has a non-zero lower bound, r_{\rm LQC}. Over the last 7 years, techniques have been developed to describe dynamics of the cosmological perturbations on this quantum background geometry, thereby facing the trans-Planckian issues squarely. Standard inflation assumes Continue reading

So long, and thanks for all the manuscripts

Adam Day

Adam Day is the Publisher of Classical and Quantum Gravity

Years ago, I sat, somewhat nervously, in a small, dimly lit room in an old office block. I’d applied for a dream job and I was expecting to learn the outcome of that application. A senior member of staff tactfully began the meeting with some friendly small-talk that did absolutely nothing to calm my nerves.

I’d heard of CQG – even before I’d seen the job advert. Reputed for its high standards of peer-review, it also held the distinction of being the first physics journal on the web. Clearly, this was a journal for brilliant pioneers and innovators (submit here) and I wanted to be part of that. Furthermore, I’d enjoyed studying relativity as an undergraduate and had hoped to become a gravitational-wave researcher, so the science of CQG was already close to my heart.  I can’t even remember the colour of the walls in that old office, but I can still hear the words “I’d like to offer you the job” very clearly.

Looking back Continue reading

Pulsed Gravitational Waves


Timothy J. Walton occupies some quantum state between a physicist and a mathematician, having obtained his PhD from the physics department at Lancaster University in 2008 but now masquerading as a lecturer in mathematics at the University of Bolton.

by Timothy J. Walton.

Applying techniques from classical electrodynamics to generate new gravitational wave perturbations

I must begin with a confession: I don’t view myself as a gravitational physicist. Despite my PhD at Lancaster University involving a formulation of relativistic elasticity and an awful lot of differential geometry, my research thus far has been within the realm of classical and quantum electrodynamics. But it was precisely within that domain, along one particular avenue of investigation, where the first seeds of an idea were sown. Following my earlier work on a class of exact finite energy, spatially compact solutions to the vacuum source-free Maxwell equations – pulsed electromagnetic waves – describing single cycle pulses of laser light [1], together with Shin Goto at Kyoto University in Japan and my former PhD supervisor Robin Tucker at Lancaster University, a new question arose: “do pulsed gravitational waves exist?’’

As I recall, this question was posed and began to take root during one of the regular meetings I have with Robin. Within my institution, I am fortunate enough Continue reading

Quantum mechanics meets CMB physics

by Massimo Giovannini.


Since 1991 Massimo Giovannini has extensively researched, taught and written on high-energy physics, gravitation and cosmology. He wrote over 180 papers and various review articles. He is the author of a book entitled “A primer on the physics of Cosmic Microwave Background” published in 2008.

Which is the origin of the temperature and polarization anisotropies of the Cosmic Microwave Background? Classical or quantum? The temperature and the polarization anisotropies of the Cosmic Microwave Background (CMB) are customarily explained in terms of large-scale curvature inhomogeneities. Are curvature perturbations originally classical or are they inherently quantum mechanical, as speculated many years ago by Sakharov?

In the conventional view these questions are quickly dismissed since the quantum origin of large-scale curvature fluctuations is, according to some, an indisputable fact of nature. This is true if and when Continue reading

Pushing post-Newtonian theory even further!

by Tanguy Marchand, Luc Blanchet and Guillame Faye.

With the spectacular discoveries by the LIGO/VIRGO collaboration of gravitational waves from the coalescence of black-hole binaries, we foresee the possibility of extremely accurate measurements of the so-called post-Newtonian (PN) coefficients that describe the gravitational waveform of these systems in the inspiral phase prior to the final coalescence. The PN coefficients are especially important because they probe the non-linear structure of general relativity (GR) and provide thus very constraining tests of this theory. In turn, they permit accurate measurements of the physical parameters of the binary, essentially the mass of the compact objects and their moment of rotation or spin.

Continue reading

Highlights of 2016 now free to read 

By Clifford Will.

Clifford Will

Clifford Will is the Editor-in-Chief of Classical and Quantum Gravity, Distinguished Professor of Physics at the University of Florida, Chercheur Associé at the Institut d’Astrophysique de Paris, and James McDonnell Professor of Space Sciences Emeritus at Washington University in St. Louis.

I am delighted to present the CQG Highlights of 2016 which are now free to read.  This prestigious annual collection is selected by the editorial board and includes notable papers on gravitational waves, black holes, general relativity, cosmology, quantum gravity and more.

As well as being free to read on the web, each paper is promoted by the journal in a number of campaigns.  Watch for the CQG Highlights brochure at your next conference.

CQG Highlights remains one of CQG’s most popular promotions.  Don’t miss your chance to be included in CQG Highlights of 2017 by publishing your next great paper in CQG.



Continue reading

Want to crush a singularity? First make it strong and then …

by Parampreet Singh.

Parampreet Singh

Parampreet Singh with a young student who often asks him the most difficult and so far unanswerable questions on the resolution of singularities. Dr Parampreet Singh is Associate Professor at Department of Physics and Astronomy at Louisiana State University.

Einstein’s theory of classical general relativity breaks down when spacetime curvature
becomes extremely large near the singularities. To answer the fundamental questions
about the origin of our Universe or what happens at the central singularity of the black holes thus lies beyond the validity of Einstein’s theory. Our research deals with discovering the framework which guarantees resolution of singularities.

It has been long expected that quantum gravitational effects tame the classical singularities leading to insights on the above questions. A final theory of quantum gravity is not yet there but the underlying techniques can be used to understand whether quantum gravitational effects resolve cosmological and black hole singularities. Our goal is Continue reading