Pulsed Gravitational Waves

timothyjwalton

Timothy J. Walton occupies some quantum state between a physicist and a mathematician, having obtained his PhD from the physics department at Lancaster University in 2008 but now masquerading as a lecturer in mathematics at the University of Bolton.

by Timothy J. Walton.


Applying techniques from classical electrodynamics to generate new gravitational wave perturbations

I must begin with a confession: I don’t view myself as a gravitational physicist. Despite my PhD at Lancaster University involving a formulation of relativistic elasticity and an awful lot of differential geometry, my research thus far has been within the realm of classical and quantum electrodynamics. But it was precisely within that domain, along one particular avenue of investigation, where the first seeds of an idea were sown. Following my earlier work on a class of exact finite energy, spatially compact solutions to the vacuum source-free Maxwell equations – pulsed electromagnetic waves – describing single cycle pulses of laser light [1], together with Shin Goto at Kyoto University in Japan and my former PhD supervisor Robin Tucker at Lancaster University, a new question arose: “do pulsed gravitational waves exist?’’

As I recall, this question was posed and began to take root during one of the regular meetings I have with Robin. Within my institution, I am fortunate enough Continue reading

Accreting onto almost Kerr-de Sitter black holes


Read the full article for free* in Classical and Quantum Gravity:
Bondi-type accretion in the Reissner-Nordström-(anti-)de Sitter spacetime
Filip Ficek 2015 Class. Quantum Grav. 32 235008

arXiv: 1509.07005
*until 30/12/15


Filip Ficek

Filip Ficek is a graduate student in Theoretical Physics at Jagiellonian University.

In spite of numerous investigations, accretion flows onto the Kerr black hole are still not fully understood, especially for radially dominated flows, where aside from a very specific case of an ultra-hard fluid, general solutions are not known. Some insight may be provided by considering a simpler problem instead, namely spherically symmetric, steady accretion in Reissner-Nordström spacetimes. It is well known that rotating Kerr black holes and charged Reissner-Nordström black holes feature similar horizon and causal structures. In fact, it is common to treat a Reissner-Nordström black hole as a toy model of an astrophysical black hole. If we also take into account the cosmological constant, we may suppose, that accretion solutions in Reissner-Nordström-(anti-)de Sitter spacetime will Continue reading