Gravity Probe B, the simplest data analysis ever

John Conklin

John W. Conklin is assistant professor in the University of Florida’s Department of Mechanical and Aerospace Engineering. Photo: Aurora M Agüero

What could be simpler than fitting a straight line to a set of data? The slope of the line is the science result for NASA’s Gravity Probe B experiment, a landmark satellite test of two predictions of general relativity. Prior to launch, the data analysis for GP-B was thought to be straight forward. After precise calibration of the measured data (not as easy as fitting a straight line), the resulting signal should change at a constant rate over time. Our goal was to measure this rate of change, hopefully with an accuracy of 1%.

In the fall of 2005, as the year-long science mission was concluding, the GP-B science team began producing plots of the science data collected from the Earth-orbiting probe.  The figure shows one such plot. The slope of the best-fit straight line to these data is the magnitude of the elusive frame dragging effect, the main science goal of Gravity Probe B. Fear began to set it in. Where was the straight line? Continue reading

Why are complete compact-binary-coalescence waveforms so important for compact-object astrophysics?

Marie-Anne Bizouard

Marie-Anne Bizouard is a research fellow at CNRS, Laboratoire de l’Accélérateur Linéaire, Orsay, France.
She is an experimental physicist working on gravitational wave searches with ground based interferometric detectors.

The numerical relativity breakthrough in 2005 has provided waveforms of the gravitational wave signal emitted by a compact binary sources that describe the coalescence, the merger of the two compact objects and the ring-down of the newborn object. These waveforms are now more and more often used in gravitational wave searches carried out with interferometric detectors (LIGO, Virgo, GEO and eventually KAGRA), instead of analytical waveforms from Post Newtonian expansion that Continue reading