Niels Warburton from the Massachusetts Institute of Technology shares an insight into his latest work with Sam Gralla and Scott Hughes published in Classical and Quantum Gravity.

Niels Warburton is a Marie Curie postdoctoral fellow currently working at the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology. He works on calculating gravitational waveforms from the capture of compact objects by black holes ranging from hundreds to millions of solar masses. Outside of research he often encounters other types of waves on the waters around Boston where he is a keen sailor. Niels co-authored the article recently published in CQG with Sam Gralla of the University of Arizona and Scott Hughes at the Massachusetts Institute of Technology.
The first merging black holes recently detected by LIGO were strange objects indeed. Torturing reality so that even light cannot escape from their interiors, as they whirled around each other at over half the speed of light, the disturbances they induced in space and time propagated outwards as gravitational waves. The measured characteristic chirp, an upsweep in frequency and amplitude of the waves, signaled that the two black holes had merged into a single, larger black hole. Amazingly, though this remnant was more than sixty times as massive as our sun it could be described by just two numbers – its mass and its spin. This is an unusual property for any macroscopic object as they usually require Continue reading
You must be logged in to post a comment.