Inspiral into Gargantua; where science meets science-fiction

Niels Warburton from the Massachusetts Institute of Technology shares an insight into his latest work with Sam Gralla and Scott Hughes published in Classical and Quantum Gravity.


Niels Warburton

Niels Warburton is a Marie Curie postdoctoral fellow currently working at the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology. He works on calculating gravitational waveforms from the capture of compact objects by black holes ranging from hundreds to millions of solar masses. Outside of research he often encounters other types of waves on the waters around Boston where he is a keen sailor. Niels co-authored the article recently published in CQG with Sam Gralla of the University of Arizona and Scott Hughes at the Massachusetts Institute of Technology.

The first merging black holes recently detected by LIGO were strange objects indeed. Torturing reality so that even light cannot escape from their interiors, as they whirled around each other at over half the speed of light, the disturbances they induced in space and time propagated outwards as gravitational waves. The measured characteristic chirp, an upsweep in frequency and amplitude of the waves, signaled that the two black holes had merged into a single, larger black hole. Amazingly, though this remnant was more than sixty times as massive as our sun it could be described by just two numbers – its mass and its spin. This is an unusual property for any macroscopic object as they usually require Continue reading

Gravitational lensing by black holes in astrophysics and in Interstellar

Interstellar's accretion disc, with and without Doppler shift.

Interstellar‘s accretion disc, with and without Doppler shift. Figure 15 a, c from “Gravitational lensing by spinning black holes in astrophysics, and in the movie Interstellar” Oliver James et al 2015 Class. Quantum Grav. 32 065001

New insights into the effects of black holes from the team responsible for the Oscar®-winning visual effects of Interstellar.

Depicting a super-massive black hole in the movie Interstellar presented a new challenge to our visual effects team at Double Negative. Luckily the Executive Producer was theoretical physicist Kip Thorne who ended up working closely with us to create a new computer code, DNGR: Double Negative Gravitational Renderer. This code traces the path of light past a spinning black hole (Kerr metric) whose immense gravity warps space and time in its vicinity. A hot disk of gas orbiting the hole appears to Continue reading

Press release: Interstellar technology throws light on spinning black holes

Michael Bishop

Michael Bishop is a Senior Press Officer for IOP Publishing

The team responsible for the Oscar-nominated visual effects at the centre of Christopher Nolan’s epic, Interstellar, have turned science fiction into science fact by providing new insights into the powerful effects of black holes. In a paper published today, 13 February, in IOP Publishing’s journal Classical and Quantum Gravity, the team describe the innovative computer code that was used to generate the movie’s iconic images of the wormhole, black hole and various celestial objects, and explain how the code has led them to new science discoveries. Using their code, the Interstellar team, comprising London-based visual effects company Double Negative and Caltech theoretical physicist Kip Thorne, found that when a camera is close up to a rapidly spinning black hole, peculiar surfaces in space, known as caustics, create more than a dozen images of individual stars and of the thin, bright plane of the Continue reading