by Niels Warburton and Maarten van de Meent
LISA will fly. Since being given the green light by the European Space Agency a year ago, the scientific consortium around the Laser Interferometer Space Antenna (LISA) has been reorganising as it gears up to meet the challenge of building and operating a gravitational wave detector in space. This process has led to a renewed focus on the waveform templates that will be needed to extract the signals and estimate source parameters.
One of the key sources for LISA are extreme mass-ratio inspirals (EMRIs). In these binaries a stellar mass compact object (such as a black hole or neutron star) spirals into a massive black hole. Emitting hundreds of thousands of gravitational wave cycles in the millihertz band, LISA will detect individual EMRIs for months or even years. The low instantaneous signal-to-noise-ratio of the gravitational waves necessitates accurate waveform templates that can be used with matched filtering techniques to extract the signal from the detectors data stream. Coherently matching a signal over months or even years requires going beyond leading-order, flux-based black hole perturbation models and calculating the so-called ‘self-force’ that drives the inspiral [1]. Roughly, one can think of this self-force as arising from the smaller orbiting body interacting with its own perturbation to the metric of the massive black hole. To this end the recent “LISA Data Analysis Work Packages” document defined a number of source-modelling challenges that must be overcome before LISA flies [2]. One of these requires the community to:
“Design and implement a framework for incorporating self-force-based numerical calculations, as they become available, into a flexible semi-analytical Kludge model that enables fast production of waveform templates”
Our work [3], “Fast Self-forced Inspirals”, is a response to this challenge. Continue reading