by Abhay Ashtekar and Brajesh Gupt.

Abhay Ashtekar holds the Eberly Chair in Physics and the Director of the Institute for Gravitation and the Cosmos at the Pennsylvania State University. Currently, he is a Visiting Professor at the CNRS Centre de Physique Théorique at Aix-Marseille Université.
Although our universe has an interesting and intricate large-scale structure now, observations show that it was extraordinarily simple at the surface of last scattering. From a theoretical perspective, this simplicity is surprising. Is there a principle to weed out the plethora of initial conditions which would have led to a much more complicated behavior also at early times?
In the late 1970s Penrose proposed such a principle through his Weyl curvature hypothesis (WCH) [1,2]: in spite of the strong curvature singularity, Big Bang is very special in that the Weyl curvature vanishes there. This hypothesis is attractive especially because it is purely geometric and completely general; it is not tied to a specific early universe scenario such as inflation.
However, the WCH is tied to general relativity and its Big Bang where classical physics comes to an abrupt halt. It is generally believed that quantum gravity effects would intervene and resolve the big bang singularity. The question then is Continue reading
You must be logged in to post a comment.