CQG+ Insight: Spacetime near an extreme black hole

Written by James Lucietti, a Lecturer in Mathematical Physics in the School of Mathematics at the University of Edinburgh; and Carmen Li, previously a graduate student in the School of Mathematics at the University of Edinburgh and now a postdoc in the Institute of Theoretical Physics at the University of Warsaw.


How many extreme black holes are there with a given throat geometry?

jameslucietti

James Lucietti, University of Edinburgh

The classification of equilibrium black hole states is a major open problem in higher dimensional general relativity. Besides being of intrinsic interest, it has numerous applications in modern approaches to quantum gravity and high energy physics. Two key questions to be answered are: What are the possible topologies and symmetries of a black hole spacetime? What is the ‘moduli’ space of black hole solutions with a given topology and symmetry? For vacuum gravity in four spacetime dimensions, these questions are answered by the celebrated no-hair theorem which reveals a surprisingly simple answer: the Kerr solution is the only possibility. However, since Emparan and Reall’s discovery of the black ring — an asymptotically flat five dimensional black hole with ‘doughnut’ topology — it has become clear that there is a far richer set of black hole solutions to the higher dimensional Einstein equations.

carmenli

Carmen Li, University of Warsaw, at the top of Ben Nevis in the UK.

Over the last decade, a number of general results have been derived which Continue reading

CQG+ Insight: Spectral Cauchy Characteristic Extraction of strain, news and gravitational radiation flux

Written by Casey Handmer, a postdoctoral scholar at the California Institute of Technology. Bela Szilagyi is a researcher at NASA’s Jet Propulsion Laboratory. Jeffrey Winicour is a professor at the University of Pittsburg. Find out more on their group website at www.black-holes.org.


Casey Handmer (postdoctoral scholar at Caltech), Bela Szilagyi (researcher at JPL) and Jeffrey Winicour (professor at Pittsburg) reprise their former stance discussing asymptotically time-like inertial scri+ foliations, now with even better CGI. Image credit: Photo manipulation by Annie Handmer, background image by SXS Collaboration: Andy Bohn et al 2015 Class. Quantum Grav. 32 065002.

Casey Handmer (Caltech), Bela Szilagyi (JPL) and Jeffrey Winicour (Pittsburg) reprise their former stance discussing asymptotically time-like inertial scri+ foliations, now with even better CGI. Image credit: Photo manipulation by Annie Handmer, background image by SXS Collaboration: Andy Bohn et al 2015 Class. Quantum Grav. 32 065002.

Gravitational waves were detected in 2015. GW150914 wiggled LIGO’s mirrors and shook the whole world, except perhaps Stockholm. The opening paragraph of our previous CQG+ article was rendered obsolete:

“Colliding black holes create powerful ripples in spacetime. Of this we are certain. Directly detecting these ripples, or gravitational waves, is one of the hardest unsolved problems in physics.”

That article presented the evolution algorithm that simulates gravitational waves from compact object binaries in computational general relativity. The evolution algorithm is the powerful engine that drives the present work: extraction of all radiative energy-momentum flux in addition to the usual strain and gravitational news.

How did this come about? At APS April 2014, my coauthor Bela and I were approached by Jeffrey Winicour: Bela’s doctoral advisor and, we learned, a referee of our first paper. He excitably described how we could use our evolution algorithm to compute the gravitational wave flux. I schemed to co-opt all other possible referees in the same way.

What is the flux? The ten Poincaré symmetries of asymptotically flat spacetime generate respective conserved Noether momenta: linear momentum, angular momentum, energy, and three boost momenta corresponding to Lorentz transforms. Supertranslations, a possible solution to the Firewall Paradox, also generate momenta that are calculated using this method.

Along the way we discovered a number of surprises. Did you know that spherical foliations of future null infinity in inertial coordinates are actually asymptotically time-like? Read more in our CQG paper.


Read the full article in Classical and Quantum Gravity:
Spectral Cauchy characteristic extraction of strain, news and gravitational radiation flux
Casey J Handmer et al 2016 Class. Quantum Grav. 33 225007


Sign up to follow CQG+ by entering your email address in the ‘follow’ box at the foot of this page for instant notification of new entries.

CQG papers are selected for promotion based on the content of the referee reports. The papers you read about on CQG+ have been rated ‘high quality’ by your peers.


This work is licensed under a Creative Commons Attribution 3.0 Unported License.

CQG+ Insight: Scalar-tensor cosmology: inflation and invariants

Written by Piret Kuusk, Mihkel Rünkla, Margus Saal, Ott Vilson, researchers from the Institute of Physics at the University of Tartu, Estonia.


The authors in front of the building of the Institute of Physics, University of Tartu, Estonia: doctoral students Mihkel Rünkla (far left), Ott Vilson (far right), senior researcher Margus Saal (center left), head of the Laboratory of Theoretical Physics Piret Kuusk (center right).

The authors in front of the building of the Institute of Physics, University of Tartu, Estonia: doctoral students Mihkel Rünkla (far left), Ott Vilson (far right), senior researcher Margus Saal (center left), head of the Laboratory of Theoretical Physics Piret Kuusk (center right).

Working in the field of cosmology one deals casually with modified gravity. Modifications can be small or large. Sometimes a small modification of the theory could cause a large effect. It is also possible that large modifications do not affect the predictions of the theory at all. The concept of cosmological inflation can probably illustrate both of these situations somehow. Adding a short period of inflation to the evolution of early universe seems as a small modification of the theory. This modification in turn has a large effect as it solves the horizon and flatness problems. In the simplest case inflation is driven by an additional scalar field with a suitable self-interaction potential. During inflation potential dominates over the kinetic term of the scalar field giving rise to a slow roll. Dealing with slow-roll inflation can illustrate the second aforementioned situation: slow-roll can be incorporated in different theoretical frameworks not affecting the universal predictions of slow-roll.

Although the predictions of slow-roll inflation are in some sense universal, the observational data can still invalidate some specific models. One can read sentences as “minimally coupled inflation is ruled out”, which invite us to consider Continue reading