Gravitational Wave Neurons

by Serena Vinciguerra 


A neuroscience perspective on the gravitational wave community.

INSIDE OUT is not only a Pixar cartoon, but also a very intelligent slogan. I am not talking about emotions, but more generally about our brain. A more common view of our brain might be OUTSIDE IN: we use the brain to interpret the inputs we receive from outside. However, the brain is also the most powerful computer ever known, so why not try the INSIDE OUT modality, and be inspired by our brains as computational models?

The brain is a biological network composed of nerve cells (neurons) connected to each other. We can imagine neurons as calculation units which compute a weighted sum of the received electric inputs. If this sum reaches a particular threshold, a new electric signal is generated, propagated and finally transmitted to other neurons.

vinciguerra_2017_image2

Serena hiking on the Forra del Lupo (Folgaria) trail – Italy

Artificial neural networks (ANNs) and their success clearly represent the strength of applying the mechanisms which drive our mind to other subjects. ANNs find many applications in research, including in the science of gravitational waves (GW). In searches for un-modelled GW transients, ANNs have been used to classify noisy events, to search for GWs associated with short gamma ray bursts as well as for signal classification. What are the eyes, the ears, the nose and the mouth which make up an identifiable face in GW transients or glitches? These are the kind of questions ANNs have to answer to perform classification/identification tasks. To find out how good they are, take a look to these papers [1, 2]

Continue reading