Can observations determine the quantum state of the very early Universe?

by Ivan Agullo, Abhay Ashtekar and Brajesh Gupt


Can observations determine the quantum state of the very early Universe?

Can we hope to know even in principle what the universe was like in the beginning? This ancient metaphysical question has acquired new dimensions through recent advances in cosmology on both observational and theoretical fronts. To the past of the surface of last scattering, the universe is optically opaque. Yet, theoretical advances inform us that dynamics of the universe during earlier epochs leaves specific imprints on the cosmic microwave background (CMB). Therefore, we can hope to deduce what the state of the universe was during those epochs. In particular, success of the inflationary scenario suggests that the universe is well described by a spatially flat Friedmann, Lemaître, Robertson, Walker (FLRW) space-time, all the way back to the onset of the slow roll phase. This is an astonishingly early time when space-time curvature was some 10^{65} times that on the horizon of a solar mass black hole and matter density was only 11 orders of magnitude smaller than the Planck scale.

Clockwise from top left: Gupt, Ashketar and Agullo

Clockwise from top left: Brajesh Gupt (Pennsylvania State University), Abhay Ashtekar (Pennsylvania State University) and Ivan Agullo (Louisiana State University)

Continue reading