How the Tiger got its Stripes

By Nicolas Yunes, Stephon Alexander, and Kent Yagi


Nature is sometimes lazy and messy, like a 4 year-old that likes to play with all of the toys and put none of them away, always increasing the degree of disorder. In physics, we quantify disorder through the concept of entropy. The tendency of systems to always increase their entropy is encoded in the second law of thermodynamics. Aside from a kid’s disorganised bedroom, another place in the universe with a tremendous amount of entropy is a black hole. Bekenstein and Hawking [1-4] proved that the entropy of a black hole in General Relativity is proportional to its area. For astrophysical black holes of stellar-mass, this yields a value of entropy of about 1056 Joules per Kelvin. The reason for this large value is their incredibly small temperature, about 10-9 Kelvin for a stellar-mass black hole, which in fact cannot be any smaller for an object of its size due to Heisenberg’s uncertainty principle.

Yunes_2

Yunes is an Associate Professor of Physics at Montana State University and co-founder of the eXtreme Gravity Institute.

Stephon

Alexander is a Professor of Physics at Brown University.

Kent

Yagi is an Assistant Professor of Physics at the University of Virginia.

The entropy area scaling is surprising because the entropy of extensive systems in statistical mechanics is proportional to their volume, not their area. In fact, Bekenstein’s and Hawking’s observation was a strong motivator for the concept of holography. The typical rationalisation of the area result is that black holes are special objects because, by definition, they possess a horizon. The argument is then that the entropy is proportional to the area because somehow the internal degrees of freedom of a black hole are imprinted on the surface area associated with its horizon. The consequence of this argument is that the only objects in nature whose entropy scales with their surface area are those with event horizons. In particular, the entropy of stars, be them compact or not, should scale with their volume and not their area. Continue reading

Quantum imprints of a black hole’s shape

Can quantum fields tell us about the curvature of a black hole event horizon?

By Tom Morley,  Peter Taylor, Elizabeth Winstanley


The event horizon of a black hole completely surrounds a singularity. It seems obvious that the event horizon takes the form of a (possibly distorted) sphere, a surface with positive curvature. If the space-time far from the black hole is flat, this must be the case. Suppose instead that the space-time in which the black hole is situated itself has negative curvature (this is known as anti-de Sitter space-time and arises in string theory). Then the event horizon does not have to have positive curvature; it can have zero or negative curvature.

How do these different horizon shapes affect black hole physics? If we look at our reflection in a flat mirror, it is undistorted, but a mirror with positive or negative curvature distorts our reflection, as might be experienced in a “hall of mirrors” at a fairground (see image below for some similar effects).

CQG_Portrait_TM

Tom Morley is a PhD student at the University of Sheffield.

CQG_Portrait_PT

Peter Taylor is Assistant Professor of Mathematical Sciences at the Centre for Astrophysics and Relativity, Dublin City University.

CQG_Portrait_EW

Elizabeth Winstanley is Professor of Mathematical Physics at the University of Sheffield.

Continue reading