Even a tiny cosmological constant casts a long shadow

Aruna Kesavan

Aruna Kesavan is a graduate student at the Pennsylvania State University

How safe is it to ignore the cosmological constant in the study of isolated systems and gravitational waves?

Analysis of isolated systems, such as stars, black holes and compact binaries, has dominated gravitational science, spanning diverse areas that include geometric analysis, computational relativity, gravitational waves, relativistic astrophysics and quantum black-holes. For example, over the past four decades, powerful positive energy theorems were proved, a theory of gravitational radiation in exact general relativity was developed, computational simulations were carried out to extract energy-momentum emitted during binary mergers, and evaporation of black holes was analyzed using appropriate Hilbert spaces of asymptotic states.

These advances are based on the Bondi-Penrose framework for zero cosmological constant \Lambda. But by now observations have Continue reading

Achieving resonance in the Advanced LIGO gravitational-wave interferometer

Alexa Staley

Alexa Staley is a PhD candidate at Columbia University in the City of New York, and has been working as a graduate student at the LIGO Hanford Observatory in Richland, WA.

The next generation gravitational wave interferometers, known as Advanced LIGO, located in Hanford, WA and Livingston, LA have been installed and are in the process of achieving a sensitivity required for the first direct detection of a gravitational wave. The goal of their design is to measure a gravitational strain as small as 4×10–24/√Hz, requiring a length resolution of approximately 10–19 rms within a 100 Hz bandwidth. This high sensitivity demands multiple optical cavities to enhance the response Continue reading

Black holes against the universe – particle and photon orbits in McVittie spacetimes

Brien Nolan

Brien Nolan is a Senior Lecturer in the School of Mathematical Sciences, Dublin City University

Black holes have a potential technological application that is frequently overlooked: they allow you to look at the back of your own head. This could be useful for checking that your tie is properly tucked into your shirt collar, or – perhaps more relevant for physicists – that your pony tail is straight. This technology relies on the fact that there exist circular photon orbits in all members of the Kerr-Newman-de Sitter family of spacetimes for which the parameters (mass, charge and cosmological constant) correspond to a black hole.

The question arises as to whether this characteristic feature of electro-vac Continue reading

Holographic entanglement obeys strong subadditivity

Aron Wall

Aron Wall is a member of the School of Natural Sciences at the Institute for Advanced Study. In his spare time he blogs at Undivided Looking. He was the 2013 recipient of the Bergmann-Wheeler thesis prize, which is sponsored by Classical and Quantum Gravity.

Gauge-gravity duality allows us to calculate properties of certain quantum field theories (QFT) from classical general relativity. One famous piece of this conjecture, due to Ryu and Takayanagi, relates the entanglement entropy in a QFT region to the area of a surface in the gravitational theory. In addition to being a clue about quantum gravity, this proposal is one of the few tools which allow us to calculate entanglement entropy analytically. Since the entanglement entropy is of increasing interest for field theory and condensed matter applications, it is important to check if the conjecture is true.

One important property of the entropy is strong subadditivity (SSA). This quantum inequality says that the sum of the entropies in two regions is always greater than the sum of the entropies of their union and intersection. My article uses proof Continue reading

Black holes as beads on cosmic strings

Amjad Ashoorioon and Robert Mann

Amjad Ashoorioon (left) is a Senior Research Associate at the physics department of Lancaster University in the United Kingdom. Robert B. Mann (right) is a Professor of Physics and Applied Mathematics at the University of Waterloo, Ontario, Canada.

Cosmic strings have been a source of fascination in cosmology since Tom Kibble first proposed their existence 40 years ago. Like an imperfection in a solidifying crystal, a cosmic string is a thread of energy that might have formed in the early universe during a symmetry breaking phase transition. Twenty years ago Ruth Gregory pointed out that a black hole could have a cosmic string as a single “hair”.   Turning this idea around, in this article we have proposed that a Continue reading

Memory at a distance

Jeff Winicour

The author, overshadowed by nature in the Muir Woods on the California coast.
Jeff Winicour is a Professor of Physics and Astronomy at the University of Pittsburgh

Can the supertranslation symmetry of radiating spacetimes affect angular momentum loss?

That was the question on my mind when I went to a workshop at Berkeley, California last winter. I knew that the supertranslations were a global aspect of the gravitational memory effect, which produces a net displacement between particles after passage of a gravitational wave. What I didn’t know, and learned from David Garfinkle at Berkeley, was that there was an electromagnetic analog of radiation memory, which produces a momentum kick on test charges after passage of a wave. Surprisingly, this result has apparently gone unnoticed in Continue reading

Cosmic magnification expanded

Obinna Umeh

Dr Obinna Umeh is a postdoctoral researcher at the University of the Western Cape in Cape Town, supported by the Square Kilometre Array project in South Africa

The accurate determination of cosmological distances is the most important probe in cosmology. Observations of type Ia supernovae imply dark energy exists because we know the relation between the distance of an object and its redshift – this changes with the relative amount of matter to dark energy, for example. But intervening matter between the supernovae and us cause fluctuations in this relationship. To a first approximation this is just normal gravitational lensing, an integrated contribution from the wobbly path the light takes to us.

Is this an accurate enough picture? Maybe at the moment, but not Continue reading

Towards quantum asymptotic flatness

Miguel and Madhavan

Miguel, a postdoc at the Raman Research Institute (RRI), enjoying a traditional south Indian dish: masala dosa.
Madhavan (professor at RRI) not enjoying traditional South American drink: mate.

It is of great physical interest to construct a canonical quantization of asymptotically flat spacetimes. The classical phase space variables are subject to delicate boundary conditions at spatial infinity and the first challenge is to construct a quantum kinematics which carries an imprint of these boundary conditions.

This work is one of a series of papers which seeks to construct such a Continue reading

New hair on black rings

Simon Ross

Simon Ross is a professor in the department of mathematical sciences at Durham University, and a member of the university’s Centre for Particle Theory.

Relating different charge densities gives black rings with non-trivial profiles with smooth horizons.

There is a rich space of solutions in five-dimensional supergravity, including smooth horizonless supertube solutions and black ring solutions. Supertubes can have arbitrary profiles, and varying charge densities along the profile, but previously-known black ring solutions required a constant charge density along the ring to have a smooth horizon.

Recently, we discovered a new kind of supersymmetric horizonless object which generalizes the supertube, which we dubbed the magnetube. They carry coordinated electric charge densities with Continue reading

Three-dimensional massive gravity and AdS/CFT

Alasdair Routh and Wout Merbis

Alasdair Routh (left) is a Ph.D. student in the Department of Applied Mathematics and Theoretical Physics at the University of Cambridge. Wout Merbis (right) is a Ph.D. student at the Centre for Theoretical Physics of the University of Groningen.

Einstein’s gravitational field equations, which relate the geometry of spacetime to the matter in it, can also be applied to a spacetime of three dimensions (3D) but in this case the matter completely determines the geometry, so there is no “room” for gravitational waves: gravitons in the quantum theory. However, in 3D there is a simple extension of Einstein’s second-order equations to the third-order equations of “Topologically-Massive Gravity” (TMG), which propagates a single massive spin-2 mode; i.e. a massive graviton.

In the context of asymptotically anti-de Sitter (AdS) space times, both 3D Einstein gravity and TMG are potentially semi-classical approximations to some consistent 3D quantum gravity theory defined, via the AdS/CFT correspondence, in terms of a 2D conformal field theory (CFT). However, Continue reading