Space Is the Place*

How to master spatial average properties of the Universe?

by Thomas Buchert, Pierre Mourier & Xavier Roy.


The question of how to define a cosmological model within General Relativity without symmetry assumptions or approximations can be approached by spatially averaging the scalar parts of Einstein’s equations. This yields general balance equations for average properties of the Universe.  One open issue that we address here is whether the form and solutions of these equations depend on the way we split spacetime into spatial sections and a global cosmological time. We also discuss whether we can at all achieve this – given the generality of possible spacetime splits.

Our CQG Letter explores the general setting with a surprisingly simple answer.

Currently most researchers in cosmology build model universes with a simplifying principle that is almost as old as General Relativity itself.  One selects solutions that are isotropic about every point, so that no properties of the model universe depend on direction. This local assumption restricts one to homogeneous geometries that define the cosmological model globally, up to the topology that is specified by initial conditions. Spacetime is foliated into hypersurfaces of constant spatial curvature, labelled by a global cosmological time-parameter. The homogeneous fluid content of these model universes is assumed to define a congruence of fundamental observers moving in time along the normal to these hypersurfaces. Einstein’s equations reduce, in this flow-orthogonal foliation, to the equations of Friedmann and Lemaître. The only gravitational degree of freedom is encoded in a time-dependent scale factor, which measures the expansion of space. Continue reading

Constructing AdS-like spacetimes

By Diego A. Carranza and Juan A. Valiente Kroon


Maldacena’s AdS-CFT correspondence has brought the study of properties of anti de Sitter-like spacetimes (AdS spacetimes for short) to the centre of attention of a wide community of researchers. This class of spacetimes is characterised by a time-like conformal boundary similar to that of the anti-de Sitter spacetime. Maldacena’s correspondence relates AdS spacetimes to dual conformal field theories defined on the boundary of the spacetime. In particular, it allows to obtain information otherwise not easily accessible about the conformal field theories through the numerical computation of the dual spacetime. Thus, numerical simulations of these spacetimes have received a substantial amount of attention in recent years.  The existence of the time-like conformal boundary in these spacetimes also has implications of interest to mathematicians studying general properties of solutions to the Einstein equations. AdS spacetimes are examples of non-globally hyperbolic solutions to the Einstein field equations. Accordingly, if one wants to formulate a well-posed initial value problem for an AdS spacetime, in addition to the initial data, it is necessary to provide some information on the boundary. The prescription of boundary data is linked to the question of stability of this kind of solutions to the Einstein equations as, during the last years, numerical evidence has showed that under certain boundary conditions the anti-de Sitter spacetime is unstable under non-linear perturbations.

Continue reading

A Successful Eccentric

by Blake Moore

Humankind has been obsessed with circles for a long time. It comes as no surprise then that the modeling of gravitational waves had focused until recently on those emitted by black holes or neutron stars in circular orbits around each other. But in the case of gravitational wave modeling, there is good reason for this obsession. Gravitational waves remove energy and angular momentum from a binary, forcing the eccentricity to decay and the orbit to circularize rapidly. Since the 1960s, the expectation has then been that the gravitational waves that ground-based detectors would observe would correspond to circular binaries.

Travis, Blake and David at Yellowstone

Travis Robson (right), Blake Moore (center), and David Anderson (left) are members of the eXtreme Gravity Institute at Montana State University. Here they are at nearby Yellowstone National Park.

But as with most things in physics, Nature adores the complex if one looks closely enough. Several astrophysical studies have recently shown that binaries may form with moderate eccentricities at orbital separations at which they would be emitting gravitational waves that ground-based detectors could observe very soon. These binaries would form near a supermassive black hole or in globular clusters, where three- or many-body interactions may source eccentricity. And if they are detected, they could shed light on their true population and formation scenario.

Continue reading