by Nicholas Loutrel.

Nicholas Loutrel is a Graduate Student in the eXtreme Gravity Institute at Montana State University.
A new method of computation aims to fill in the gaps in our knowledge of gravitational waves from eccentric binaries.
The modeling of gravitational waves (GWs) suitable for detection with ground-based detectors has been mostly focused on binary systems composed of compact objects, such as neutron stars (NSs) and black holes (BHs). Binaries that form with wide orbital separations are expected to have very small orbital eccentricity, typically less than 0.1, by the time their GW emission enters the detection band of these instruments. However, in dense stellar environments, unbound encounters between multiple compact objects can result in the formation of binaries with high orbital eccentricity (close to, but still less than unity) and whose GW emission is in band for ground-based detectors. Such systems are expected to be Continue reading
You must be logged in to post a comment.