Coating thermal noise research for LIGO-India

Maya Kinley-Hanlon — an undergraduate student in the Department of Physics at the American University in Washington, DC — tells us more about her group’s work on optical coatings for LIGO-India.


Maya Kinley-Hanlon is a PhD candidate in the Department of Physics at the American University in Washington, DC.

Maya Kinley-Hanlon is an undergraduate student in the Department of Physics at the American University in Washington, DC.

Our CQG paper describes measurements of optical coatings on silica glass substrates to determine if storing the LIGO optics for many years before installing them in India will cause any problems.  The coatings are known to be fairly robust in their optical properties, but as is always the case with LIGO optics, no one has any real idea about the thermal noise properties.  Since thermal noise from the coatings is expected to be a limiting noise source in the LIGO detectors, knowing if storing the optics could cause a problem is an important issue.  I worked on this Continue reading

Waves, stability and exotic black holes

Jake Dunn and Dr Claude Warnick from the Pure Mathematics group at Imperial College, London tell us all about their research using the Klein-Gordon equation to study black holes.


Jake Dunn

Jake Dunn is a PhD student at Imperial College, London.
Claude Warnick is a Lecturer in Pure Mathematics at Imperial College, London.

There is a long standing conjecture in the theory of general relativity that the final state of the gravitational collapse of a star should be a stationary black hole modelled by the Kerr solution. To this date there remains no mathematical proof of this statement, and it seems that we may have to wait a while before this result can be established. Even the simpler problem of black hole stability is a considerable mathematical challenge.

We may think of a stationary black hole as Continue reading

What does numerical relativity have to do with detecting gravitational waves?

Heather Fong — a PhD candidate in Physics at the University of Toronto, who also loves travelling and gastronomy photography — gives us an insight into her group’s work on using numerical relativity simulations for the detection of gravitational waves.


heatherfong

Heather Fong, a PhD candidate in Physics at the University of Toronto.

Answer: quite a lot! Numerical relativity (NR) provides the most accurate solutions to the binary black hole problem, which is exactly the type of source LIGO wants to detect — and has succeeded at! Most of the time, LIGO’s data streams are overwhelmed with noise, and so we use a technique called matched-filtering to identify gravitational-wave signals. Finding and characterizing signals requires a massive amount of accurate waveforms, and we use semi-analytic waveform models as filters which are built using the results of NR simulations.

Why don’t we use NR alone to identify signals? It certainly would be ideal if the theoretical template waveforms were generated entirely from NR; not only would we be using the most accurate waveforms available, it would also allow us to Continue reading

Fractals and black hole shadows

Jake Shipley and Dr Sam Dolan work in the Particle Astrophysics and Gravitation group at the University of Sheffield, focusing on general relativity, wave propagation and black hole physics. Here they provide us with an insight into their research. 


Jake Shipley

Jake Shipley is a Ph.D student in the School of Mathematics and Statistics at the University of Sheffield. If Jake were a black hole, you would also see a lensed version of Dr Sam Dolan, standing behind the camera.

This has been a “miracle year” for relativity.

LIGO detected gravitational waves. The LISA Pathfinder mission demonstrated near-perfect freefall in space. And the era of gravitational-wave astronomy began in some style.

A century after black holes and gravitational waves were first predicted, we have learnt something truly mind-boggling: When two black holes collide, they shake the fabric of space-time with more power than is radiated by all the stars in the known universe put together!

The “chirps” from distant black hole collisions will travel for millions of years, at the speed of light, to reach our growing network of gravitational-wave detectors on Earth … and one day, out in space.

Next year, attention will turn to the Event Horizon Telescope (EHT): a global network of radio telescopes linked together to form an Earth-sized virtual telescope, using the technique of Very Long Baseline Interferometry. The EHT will Continue reading

CQG’s guide to Twitter at conferences – #GR21

Adam Day

Adam Day, Executive Editor of Classical and Quantum Gravity in New York City for #GR21

The first time I heard of Twitter, I thought “why would anyone use this?” It seemed to have such limited utility – another passing internet fad that we would all grow tired of soon. Out of curiosity, I joined Twitter back in 2009 and it was clear at that point that gravitational physicists shared my first impressions. There were very few CQG authors signed up to the service and fewer who were visibly using it.

Over time, however, that picture changed and my mind with it. There is now Continue reading

Why is our universe about to decay?

Dr Kin-ya Oda (left, Osaka university) and Dr Masatoshi Yamada (right, Kyoto university).

Dr Kin-ya Oda (left, Osaka university) and Dr Masatoshi Yamada (right, Kyoto university).

It has been revealed that we are living on the edge of vacuum instability by the discovery of Higgs particle at the Large Hadron Collider since 2012. The determination of Higgs mass finally provides the last-missed parameter, the Higgs self coupling, to be 0.12 in the Standard Model of particle physics after nearly half century of its foundation. This value completes the initial conditions for a set of differential equations, called renormalization group (RG) equations, which govern how particles interact at very high energy scales. It turns out that the self coupling can vanish or even become negative at the Planck scale, where the quantum gravity effects become significant. We note for later reference that the Yukawa coupling between the Higgs and top quark plays a crucial role to reduce the Higgs self coupling in its RG evolution. The Higgs potential is about to become Continue reading

Evolution of the Universe Through Soft Singularities

Vasilis Oikonomu

Dr Vasilis K. Oikonomou is a researcher in Tomsk State Pedagogical University and in the Laboratory for Theoretical Cosmology in Tomsk State University of Control Systems and Radioelectronics (TUSUR) in Tomsk Russia. His research interests are focused on inflationary and bouncing cosmology, modified gravity, supersymmetric quantum systems, mathematical physics and epistemic game theory.

Describing the correct Universe evolution is one of the challenges in modern theoretical cosmology. The vital features of a correct Universe evolution are the successful description of early and late-time acceleration and also the intermediate eras, the radiation and matter domination eras. With our recently published CQG paper entitled ‘’ Singular F(R) cosmology unifying early and late-time acceleration with matter and radiation domination era’’, the author and Prof. Sergei Odintsov provided an F(R) gravity description of all the evolution eras in an unified way.

The primordial curvature perturbations are so relevant today for current observations since these capture the information about the primordial Universe at the time inflation took place. During the Continue reading

Wormholes can fix black holes

Diego Rubiera-Garcia and Gonzalo Olmo

Diego Rubiera-Garcia (left, Lisbon University) and Gonzalo J. Olmo (right, University of Valencia – CSIC) after crossing a wormhole that connects Europe with the beaches of the Brazilian Northeast.

According to Einstein’s theory of general relativity (GR), black holes are ferocious beasts able to swallow and destroy everything within their reach. Their strong gravitational pull deforms the space-time causal structure in such a way that nothing can get out of them once their event horizon is crossed. The fate of those incautious observers curious enough to cross this border is to suffer a painful spaghettification process due to the strong tidal forces before being destroyed at the center of the black hole.

Antonio Sanchez-Puente

Antonio Sanchez-Puente (University of Valencia – CSIC) enjoying a sunny day in Valencia after submitting yet another postdoc application.

For a theoretical physicist, the suffering of observers is admissible (one might even consider it part of an experimentalist’s job) but their total destruction is not. The destruction of observers (and light signals) is determined by the fact that the affine parameter of their word-line (its geodesic) stops at the center of the black hole. Their clocks no longer tick and, therefore, there is no way for them to exchange or acquire new information. This implies the breakdown of the predictability of the laws of physics because physical measurements are no longer possible at that point. For this reason, when a space-time has incomplete geodesics — word-lines whose affine parameter does not cover the whole real line — we say that it is singular.

In order to overcome the conceptual problems raised by singularities, a careful analysis of what causes the destruction of observers is necessary. Our intuition may get satisfied by blaming the enormous tidal forces near the center, but the problem is much subtler. This is precisely what we explore in our paper. Continue reading

How do we know LIGO detected gravitational waves?

The practical challenges of characterizing the Advanced LIGO detectors.

The-LIGO-Detchar_team

This CQG+ piece is brought to you by experts in the LIGO detector characterisation group (Detchar)
Comics by Nutsinee Kijbunchoo

The Advanced LIGO gravitational wave detectors are extremely sensitive instruments, measuring almost impossibly small changes in length. Their sensitivity is equivalent to measuring a change in distance the thickness of a human hair between Earth and Alpha Centauri, the closest star to Earth. Naturally, such a sensitive measurement picks up background noise in the form of disturbances that pollute the signal. For example, we might expect to see wind gusts, lightning strikes, earthquakes, or four buses full of middle schoolers rolling down the driveway to appear in the data as noise.

How then can we be sure LIGO really detected a Continue reading

Taking Newton into space

The test mass retroreflector

Schematic of M R Feldman et al‘s  proposed experiment. The test mass retroreflector, exhibiting harmonic motion within the tunnel of the larger layered sphere, is represented by the filled black circle on the left. Determinations of the round trip light-time from the host spacecraft (on the right) using an onboard ranging system provide measurements of the period of the oscillator.

Newton’s gravitational constant, G, is crucial for fundamental physics: it governs how much spacetime curves for a given mass, is essential for metrology, and might give clues to a deeper understanding of quantum gravity. However, G continues to present unexpected issues in need of resolution. Determinations over the last thirty years have yielded inconsistencies between experiments significantly greater than their reported individual uncertainties, oddly with possible periodic behavior. To push forward, the National Science Foundation (NSF) has recently called for new “high-risk/high-impact” proposals to produce a step-change improvement in measurements (NSF 16-520).

In response, we propose taking advantage of the classic gravity train mechanism by Continue reading