Memory at a distance

Jeff Winicour

The author, overshadowed by nature in the Muir Woods on the California coast.
Jeff Winicour is a Professor of Physics and Astronomy at the University of Pittsburgh

Can the supertranslation symmetry of radiating spacetimes affect angular momentum loss?

That was the question on my mind when I went to a workshop at Berkeley, California last winter. I knew that the supertranslations were a global aspect of the gravitational memory effect, which produces a net displacement between particles after passage of a gravitational wave. What I didn’t know, and learned from David Garfinkle at Berkeley, was that there was an electromagnetic analog of radiation memory, which produces a momentum kick on test charges after passage of a wave. Surprisingly, this result has apparently gone unnoticed in Continue reading

New focus issue: Entanglement and quantum gravity

Eugenio Bianchi and Carlo Rovelli

Eugenio Bianchi (left) is an assistant professor at Pennsylvania State University and Carlo Rovelli (right) is a professor at Aix-Marseille University at the Centre de Physique Theorique de Luminy

Quantum gravity alone is not the only major theoretical open problem in fundamental physics: gravity, quantum theory and thermodynamics form a triple, whose full interconnections we have definitely not yet understood. As soon as quantum effects appear in a curved spacetime, thermal aspects appear to be unavoidable. Combining thermodynamics and (full) gravity might turn out to be even more crucial than understanding the quantum aspects of the gravitational field alone. In recent years, it has become increasingly clear that entanglement entropy is a central ingredient for the synthesis we are seeking. Continue reading

Cosmic magnification expanded

Obinna Umeh

Dr Obinna Umeh is a postdoctoral researcher at the University of the Western Cape in Cape Town, supported by the Square Kilometre Array project in South Africa

The accurate determination of cosmological distances is the most important probe in cosmology. Observations of type Ia supernovae imply dark energy exists because we know the relation between the distance of an object and its redshift – this changes with the relative amount of matter to dark energy, for example. But intervening matter between the supernovae and us cause fluctuations in this relationship. To a first approximation this is just normal gravitational lensing, an integrated contribution from the wobbly path the light takes to us.

Is this an accurate enough picture? Maybe at the moment, but not Continue reading

The new CQG Highlights of 2013-14

Ben Sheard

Ben Sheard is the publishing editor of Classical and Quantum Gravity

It is my pleasure to present the CQG Highlights of 2013-14. The Highlights articles are chosen by the Editorial Board as a selection of some of the best work published in the journal, based on criteria of interest, significance and novelty.

The articles span the whole of CQG’s subject scope and include focus issue articles and topical reviews in addition to regular papers. All of the Highlights articles are free to download until the end of 2015.

As part of the promotion of the Highlights we produce an annual Highlights brochure which contains further information about journal activity including forthcoming special issues and prize Continue reading