Boundaries, Corners and Creases

 by Joseph Samuel.


Cricketing nations have a very good idea what a boundary is, it’s good for a cool four runs, without the bother of running! Corners are tense moments in a football (soccer to some) match when a well struck ball can curve into the goal. The crease is what a batsman lunges for when the wicket keeper ….. wait! this is not a sports column, but CQG+! Let’s back up and explain what our paper really is about.

In a path integral approach to quantum gravity, one has to divide up spacetime into pieces and focus on the action within each piece. In the elementary case of particle mechanics, this “skeletonisation” converts the action expressed as a Riemann integral into a discrete sum. A desirable property of the action is that it should be additive when we glue the pieces back together. This is achieved only when one properly takes into account the boundaries of the pieces.  The boundaries can be spacelike, timelike or null. Much work has focused on the first two cases. The Einstein–Hilbert Action principle for spacetime regions with null boundaries has only recently attracted attention (look up the Arxiv for papers by E. Poisson et al and Parattu et al; references would not be consistent with the chatty, informal style of  CQG+). These papers deal with the appropriate boundary terms that appear in all boundary signatures.

Continue reading

Interview with Daniela Saadeh: winner of the IOP Gravitational Physics Group (GPG) thesis prize

Daniela Saadeh

Daniela Saadeh – UCL Astrophysics Group

CQG is proud to sponsor the IOP Gravitational Physics Group (GPG) thesis prize. This year the prize was awarded to Daniela Saadeh, who we have interviewed below. Congratulations Daniela!

Can you tell us a little bit about the work in your thesis?

A fundamental assumption of the standard model of cosmology is that the large-scale Universe is isotropic – i.e. that its properties are independent of direction. Historically, this concept stemmed from the Copernican Principle, the philosophical statement that we do not occupy a ‘special’ place in the Universe. In physical terms, this idea is converted into the assumption that all positions and directions in the Universe are equivalent, so that no observer is ‘privileged’.

However, assumptions must be tested, especially foundational ones. General relativity – our standard theory of gravity – allows for many ways in which spacetime could be anisotropic: directional symmetry is not fundamentally required. If the Universe were indeed to be anisotropic, we would actually need to carefully revise our understanding (for instance, calculations about its history or content). Making this health check is very important! Continue reading

Is the Cosmic Microwave Background Gaussian?

by Thomas Buchert, Martin J. France & Frank Steiner.


Thomas Buchert is Professor of Cosmology at the University of Lyon 1, working at the ‘Centre de Recherche Astrophysique de Lyon’ (CRAL)

This challenging question touches on the initial conditions of the primordial Universe, on modeling  assumptions, and statistical ensembles generating the Cosmic Microwave Background.

Our CQG paper explores model-independent approaches to these challenges.

We observe only a single Universe, the one we live in. We cannot rerun cosmic history to see how actual observations might have varied. Nor can we communicate with distant aliens to build an ensemble of observations of the Universe from different vantages in space and time. The only possibility that remains is to make a model of the Universe. Running this model a large number of times, we can generate an ensemble of realizations of the Cosmic Microwave Background (CMB) sky maps. In principle, it is then possible to answer the question, whether there is a single realization of the chosen model that agrees with what is observed. Moreover, we should determine the probability of finding this single realization within the ensemble of patterns that our model allows. To do this we have to Continue reading

Things Change – Even in Hamiltonian General Relativity!

by J. Brian Pitts.


brianpittspic

J. Brian Pitts is a Senior Research Associate, Faculty of Philosophy, University of Cambridge.

Observables and the Problem of Time

Mixing gravity and quantum mechanics is hard. Many approaches start with a classical theory and apply the magic of quantization, so it is important to have the classical theory sorted out well first. But the “problem of time” in Hamiltonian General Relativity looms: change seems missing in the canonical formulation.

Are Hamiltonian and Lagrangian forms of a theory equivalent? It’s not so obvious for Maxwell’s electromagnetism or Einstein’s GR, for which the Legendre transformation from the Lagrangian to the Hamiltonian doesn’t exist. It was necessary to reinvent the Hamiltonian formalism: constrained Hamiltonian dynamics. Rosenfeld’s 1930 work was forgotten until after Dirac and (independently) Bergmann’s Syracuse group had reinvented the subject by 1950. Recently a commentary and translation were published by Salisbury and Sundermeyer.

As canonical quantum gravity grew in the 1950s, it seemed less crucial for Continue reading

Going NUTs

By Paul I. Jefremov and Volker Perlick.


Among all known solutions to Einstein’s vacuum field equation the (Taub-)NUT metric is a particularly intriguing one. It is that metric that owing to its counter-intuitive features was once called by Charles Misner “a counter-example to almost anything”. In what follows we give a brief introduction to the NUT black holes, discuss what makes them interesting for a researcher and speculate on how they could be detected should they exist in nature.

paul jefremov-and-volker

Volker Perlick and Pavel (Paul) Ionovič Jefremov from the Gravitational Theory group at the University of Bremen in Germany. Volker is a Privatdozent and his research interests are in classical relativity, (standard and non-standard) electrodynamics and Finsler geometry. He is an amateur astronomer and plays the piano with great enthusiasm and poor skills. Paul got his diploma in Physics at the National Research Nuclear University MEPhI in Moscow, 2014. Now he is a PhD Student in the Erasmus Mundus Joint Doctorate IRAP Programme at the University of Bremen. Beyond the scientific topics in physics his interests include philosophy in general, philosophy of science, Eastern and ancient philosophy, religion, political and social theories and last but not the least organic farming.

The NUT (Newman–Unti–Tamburino) metric was obtained by Newman, Unti and Tamburino (hence its name) in 1963. It describes a black hole which, in addition to the mass parameter (gravito-electric charge) known from the Schwarzschild solution, depends on a “gravito-magnetic charge”, also known as NUT parameter. If the NUT metric is analytically extended, on the other side of the horizon it becomes isometric to a vacuum solution of Einstein’s field equations found by Abraham Taub already in 1951. However, for an observer who is prudent enough to stay outside the black hole, the Taub part is irrelevant.

At first sight, the existence of the NUT metric seems to violate the uniqueness (“no-hair”) theorem of black holes according to which a non-spinning uncharged black hole is uniquely characterised by its mass. Actually, there is no contradiction because Continue reading