Attempting to quantize geometry

Jan Ambjørn is professor of theoretical high energy physics at the Niels Bohr Institute, University of Copenhagen and at IMAPP, Radboud University.

Jan Ambjørn is professor of theoretical high energy physics at the Niels Bohr Institute, University of Copenhagen and at IMAPP, Radboud University.

The Standard Model of particle physics is a quantum theory. It is born quantum. The observations of the weak and the strong interactions were from the beginning linked to quantum phenomena. For gravity the situation is different. Because the gravitational coupling constant is so small compared to coupling constants in the Standard Model, any observations of quantum aspects of gravity have been ruled out so far. Here we will assume that gravity is a quantum theory. However, quantizing gravity has so far turned out to be difficult. That Continue reading

Isolated systems are asymptotically… flat

Martin Reiris

Martin Reiris is Junior Scientist at the Max Planck Institute for Gravitational Physics (Golm-Germany) since 2009. He received the PHD in pure math in 2005 at SUNYSB, and held a Moore Instructor in Math at MIT from 2006 to 2009. His interests are mainly in geometry and the mathematical structure of general relativity

In the extraordinary manuscript The Foundation of the Generalised Theory of Relativity, printed in 1916 in Annalen der Physics, Einstein begins addressing what he calls an epistemological defect of classical mechanics, (as well as of special relativity), whose dignity he attributes to E Mach. He imagined two bodies, A and B, made of the same fluid material and sufficiently separated from each other that none of the properties of one could be attributed to the existence of the other. Observers at rest in one body, he continues, see the other body rotating at a constant angular velocity, yet these same observers measure a perfect round surface in one case and an ellipsoid of rotation in the other case. It is then asked: “Why is this difference between the two bodies?”. Continue reading

Why are complete compact-binary-coalescence waveforms so important for compact-object astrophysics?

Marie-Anne Bizouard

Marie-Anne Bizouard is a research fellow at CNRS, Laboratoire de l’Accélérateur Linéaire, Orsay, France.
She is an experimental physicist working on gravitational wave searches with ground based interferometric detectors.

The numerical relativity breakthrough in 2005 has provided waveforms of the gravitational wave signal emitted by a compact binary sources that describe the coalescence, the merger of the two compact objects and the ring-down of the newborn object. These waveforms are now more and more often used in gravitational wave searches carried out with interferometric detectors (LIGO, Virgo, GEO and eventually KAGRA), instead of analytical waveforms from Post Newtonian expansion that Continue reading

The Weyl curvature and the Cosmic Censorship conjecture

Parampreet Singh

Parampreet Singh is an Assistant Professor of Physics at Louisiana State University

Whether the gravitational collapse of an astrophysical object leads to a black hole or a naked singularity is one of the most intriguing issues in Einstein’s theory of General Relativity. In many astrophysical situations, the initial conditions are such that a trapped region forms and the gravitational collapse ends in a black hole, in confirmation with the Cosmic Censorship conjecture. However, in recent years Continue reading

What can CQG+ do for you?

Adam Day

Adam Day is the Publisher of Classical and Quantum Gravity and CQG+

Our primary goal with CQG+ is to raise the visibility of some of the best papers in CQG.

Take a look at the table below this post: it shows the 20 most downloaded papers in CQG since the launch of CQG+.  At the time that the data was collected, 15 papers had been promoted by CQG+. 13 of those are to be found in the top 20 (and the other 2 are not far behind).

This leaves no doubt in my mind that CQG+ is achieving its goal – but what does this mean for you? Continue reading

Symmetry operators

Thomas Bäckdahl

Thomas Bäckdahl is a Post-Doctoral Research Assistant in the School of Mathematics at the University of Edinburgh.

Conserved quantities, for example energy and momentum, play a fundamental role in the analysis of dynamics of particles and fields. For field equations, one manifestation of conserved quantities in a broad sense is the existence of symmetry operators, i.e. linear differential operators which take solutions to solutions. A well-known example of a symmetry operator for the scalar wave equation is provided by the Lie derivative along a Killing vector field.

It is important to note that other kinds of objects Continue reading

Testing the weak equivalence principle with atom interferometry in space

Clifford Will

Clifford Will is the Editor-in-Chief of Classical and Quantum Gravity

The Weak Equivalence Principle (WEP) is one of the three pillars that support all metric theories of gravity, and testing it to high precision has occupied experimentalists for over 100 years. Although many successful tests have been performed, there is still room for new experiments (see this recent CQG focus issue on tests of WEP).

This paper describes in detail a concept called STE-QUEST for testing WEP in space. What makes this different from other space experiments, such as MICROSCOPE, due for launch in 2016, and STEP, still only a design concept, is that those experiments use macroscopic bodies, while STE-QUEST will use fundamentally quantum-mechanical systems: Bose-Einstein condensates of rubidium isotopes. Using atom Continue reading

A unified description of the second order cosmological density contrast

In this paper the authors introduce a new way of expressing the relativistic density contrast of matter perturbations in four commonly used gauges, both at first and second orders.

Julien Larena

Dr Julien Larena is a senior lecturer in the Department of Mathematics at Rhodes University, South Africa. His research is centred on relativistic corrections to cosmology, tests of the Copernican principle, and the backreaction issue in cosmology.

This new method is very interesting, since it provides a unified treatment of the density contrast in the various gauges, thus allowing a straightforward comparison of results obtained by other authors in different gauges. This should be useful when computing non-trivial effects such as the properties Continue reading

A spacetime route to positive mass

Brien Nolan

Brien Nolan is a Senior Lecturer in the School of Mathematical Sciences, Dublin City University

This paper provides an important, unexpected and very satisfying route to positivity of mass in General Relativity. It shows positivity of the Trautman-Bondi mass in a way that avoids both the heavy differential geometric machinery of the work of Schoen and Yau, and the Continue reading

Black hole voyeurism

Alexander Smith and Robert Mann

Alexander (right) is a PhD student in the department of Physics & Astronomy at the University of Waterloo. Robert (left), a past-president of the Canadian Association of Physicists, is a senior professor in the department of Physics & Astronomy and the department of Applied Mathematics at the University of Waterloo and an affiliate at the Perimeter Institute.

Could a quantum detector peek inside a black hole?

It has long been known that the thermal radiation emitted by a black hole can be detected by a particle detector, and even today the details of this process are an active area of research. But are such detectors sensitive to the interior structure of black holes? From a classical perspective, conventional wisdom would suggest not: the topological censorship theorem relegates all isolated topological structures (such as wormholes, topological knots, etc) to be hidden behind a horizon and thus inaccessible to observers by classical probes. But Continue reading